The Role of Inflammation, Hypoxia, and Opioid Receptor Expression in Pain Modulation in Patients Suffering from Obstructive Sleep Apnea

Author:

Kaczmarski Piotr,Karuga Filip FranciszekORCID,Szmyd BartoszORCID,Sochal MarcinORCID,Białasiewicz Piotr,Strzelecki DominikORCID,Gabryelska AgataORCID

Abstract

Obstructive sleep apnea (OSA) is a relatively common disease in the general population. Besides its interaction with many comorbidities, it can also interact with potentially painful conditions and modulate its course. The association between OSA and pain modulation has recently been a topic of concern for many scientists. The mechanism underlying OSA-related pain connection has been linked with different pathophysiological changes in OSA and various pain mechanisms. Furthermore, it may cause both chronic and acute pain aggravation as well as potentially influencing the antinociceptive mechanism. Characteristic changes in OSA such as nocturnal hypoxemia, sleep fragmentation, and systemic inflammation are considered to have a curtailing impact on pain perception. Hypoxemia in OSA has been proven to have a significant impact on increased expression of proinflammatory cytokines influencing the hyperalgesic priming of nociceptors. Moreover, hypoxia markers by themselves are hypothesized to modulate intracellular signal transduction in neurons and have an impact on nociceptive sensitization. Pain management in patients with OSA may create problems arousing from alterations in neuropeptide systems and overexpression of opioid receptors in hypoxia conditions, leading to intensification of side effects, e.g., respiratory depression and increased opioid sensitivity for analgesic effects. In this paper, we summarize the current knowledge regarding pain and pain treatment in OSA with a focus on molecular mechanisms leading to nociceptive modulation.

Funder

Ministry of Education and Science, Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3