Optimized Apamin-Mediated Nano-Lipidic Carrier Potentially Enhances the Cytotoxicity of Ellagic Acid against Human Breast Cancer Cells

Author:

Badr-Eldin Shaimaa M.ORCID,Aldawsari Hibah M.ORCID,Fahmy Usama A.ORCID,Ahmed Osama A. A.ORCID,Alhakamy Nabil A.ORCID,Al-hejaili Omar D.,Alhassan Alhanoof A.,Ammari Ghadeer A.,Alhazmi Shouq I.,Alawadi Raghad M.,Bakhaidar RanaORCID,Alamoudi Abdulmohsen J.ORCID,Neamatallah ThikryatORCID,Tima Singkome

Abstract

Ellagic acid has recently attracted increasing attention regarding its role in the prevention and treatment of cancer. Surface functionalized nanocarriers have been recently studied for enhancing cancer cells’ penetration and achieving better tumor-targeted delivery of active ingredients. Therefore, the present work aimed at investigating the potential of APA-functionalized emulsomes (EGA-EML-APA) for enhancing cytototoxic activity of EGA against human breast cancer cells. Phospholipon® 90 G: cholesterol molar ratio (PC: CH; X1, mole/mole), Phospholipon® 90 G: Tristearin weight ratio (PC: TS; X2, w/w) and apamin molar concentration (APA conc.; X3, mM) were considered as independent variables, while vesicle size (VS, Y1, nm) and zeta potential (ZP, Y2, mV) were studied as responses. The optimized formulation with minimized vs. and maximized absolute ZP was predicted successfully utilizing a numerical technique. EGA-EML-APA exhibited a significant cytotoxic effect with an IC50 value of 5.472 ± 0.21 µg/mL compared to the obtained value from the free drug 9.09 ± 0.34 µg/mL. Cell cycle profile showed that the optimized formulation arrested MCF-7 cells at G2/M and S phases. In addition, it showed a significant apoptotic activity against MCF-7 cells by upregulating the expression of p53, bax and casp3 and downregulating bcl2. Furthermore, NF-κB activity was abolished while the expression of TNfα was increased confirming the significant apoptotic effect of EGA-EML-APA. In conclusion, apamin-functionalized emulsomes have been successfully proposed as a potential anti-breast cancer formulation.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3