Abstract
Two neural networks (NN) are designed to predict the particle mobility of a molecular glassformer in a wide time window ranging from vibrational dynamics to structural relaxation. Both NNs are trained by information concerning the local structure of the environment surrounding a given particle. The only difference in the learning procedure is the inclusion (NN A) or not (NN B) of the information provided by the fast, vibrational dynamics and quantified by the local Debye–Waller factor. It is found that, for a given temperature, the prediction provided by the NN A is more accurate, a finding which is tentatively ascribed to better account of the bond reorientation. Both NNs are found to exhibit impressive and rather comparable performance to predict the four-point susceptibility χ4(t) at τα, a measure of the dynamic heterogeneity of the system.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献