The Reduced Graphene Oxide (rGO) Induces Apoptosis, Autophagy and Cell Cycle Arrest in Breast Cancer Cells

Author:

Krętowski Rafał,Cechowska-Pasko Marzanna

Abstract

Reduced graphene oxide (rGO) has already been reported as a potential cytostatic agent in various cancers. However, the mechanisms underlying rGO’s cytotoxicity are still insufficiently understood. Thus, the aim of the study was to investigate the molecular and cellular effects of rGO in breast cancer. Given this, two cell lines, MDA-MB-231 and ZR-75-1, were analyzed using MTT test, flow cytometry and Western blot assay. Incubation with rGO resulted in a multitude of effects, including the stimulation of autophagy, cell cycle arrest and, finally, the apoptotic death of cancer cells. Notably, rGO had minimal effect on normal human fibroblasts. Apoptosis in cancer cells was accompanied by decreased mitochondrial membrane potential, the deregulated expression of mitochondrial proteins and the activation of caspase 9 and caspase 3, suggesting that rGO predominantly induced apoptosis via intrinsic pathway. The analysis of LC3 protein expression revealed that rGO also caused autophagy in breast cancer cells. Moreover, rGO treatment resulted in cell cycle arrest, which was accompanied by deregulated p21 expression. Altogether, rGO seems to have multidirectional cytostatic and cytotoxic effects in breast cancer cells, making it a promising agent worthy of further investigation.

Funder

This research was funded by Polish National Science Center, Miniatura 2 call

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3