Chrono-Aerobic Exercise Optimizes Metabolic State in DB/DB Mice through CLOCK–Mitophagy–Apoptosis

Author:

Zhang ZheORCID,Li Xi,Zhang Jun,Du Jing,Zhang Qiang,Ge Zhe,Ding ShuzheORCID

Abstract

Although the benefits of aerobic exercise on obesity and type 2 diabetes are well-documented, the pathogenesis of type 2 diabetes and the intervention mechanism of exercise remain ambiguous. The correlation between mitochondrial quality and metabolic diseases has been identified. Disruption of the central or peripheral molecular clock can also induce chronic metabolic diseases. In addition, the interactive effects of the molecular clock and mitochondrial quality have attracted extensive attention in recent years. Exercise and a high-fat diet have been considered external factors that may change the molecular clock and metabolic state. Therefore, we utilized a DB/DB (BSK.Cg-Dock7m +/+ Leprdb/JNju) mouse model to explore the effect of chrono-aerobic exercise on the metabolic state of type 2 diabetic mice and the effect of timing exercise as an external rhythm cue on liver molecular clock-mitochondrial quality. We found that two differently timed exercises reduced the blood glucose and serum cholesterol levels in DB/DB mice, and compared with night exercise (8:00 p.m., the active period of mice), morning exercise (8:00 a.m., the sleeping period of mice) significantly improved the insulin sensitivity in DB/DB mice. In contrast, type 2 diabetes mellitus (T2DM) increased the expression of CLOCK and impaired the mitochondrial quality (mitochondrial networks, OPA1, Fis1, and mitophagy), as well as induced apoptosis. Both morning and night exercise ameliorated impaired mitochondrial quality and apoptosis induced by diabetes. However, compared with morning exercise, night exercise not only decreased the protein expression of CLOCK but also decreased excessive apoptosis. In addition, the expression of CLOCK was negatively correlated with the expression of OPA1 and Fis1. In summary, our research suggests that morning exercise is more beneficial for increasing insulin sensitivity and promoting glucose transport in T2DM, whereas night exercise may improve lipid infiltration and mitochondrial abnormalities through CLOCK–mitophagy–apoptosis in the liver, thereby downregulating glucose and lipid disorders. In addition, CLOCK-OPA1/Fis1–mitophagy might be novel targets for T2DM treatment.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Construction Project of Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3