Unique Features of the Tissue Structure in the Naked Mole Rat (Heterocephalus glaber): Hypertrophy of the Endoplasmic Reticulum and Spatial Mitochondrial Rearrangements in Hepatocytes

Author:

Vays Valeriya,Vangeli Irina,Eldarov Chupalav,Popkov VasilyORCID,Holtze SusanneORCID,Hildebrandt ThomasORCID,Averina Olga,Zorov DmitryORCID,Bakeeva Lora

Abstract

The reason for the exceptional longevity of the naked mole rat (Heterocephalus glaber) remains a mystery to researchers. We assumed that evolutionarily, H. glaber acquired the ability to quickly stabilize the functioning of mitochondria and endoplasmic reticulum (ER) to adjust metabolism to external challenges. To test this, a comparison of the hepatic mitochondria and ER of H. glaber and C57BL/6 mice was done. Electron microscopy showed that 2-months-old mice have more developed rough ER (RER) than smooth ER (SER), occupying ~17 and 2.5% of the hepatocytic area correspondingly, and these values do not change with age. On the other hand, in 1-week-old H. glaber, RER occupies only 13% constantly decreasing with age, while SER occupies 35% in a 1-week-old animal, constantly rising with age. The different localization of mitochondria in H. glaber and mouse hepatocytes was confirmed by confocal and electron microscopy: while in H. glaber, mitochondria were mainly clustered around the nucleus and on the periphery of the cell, in mouse hepatocytes they were evenly distributed throughout the cell. We suggest that the noted structural and spatial features of ER and mitochondria in H. glaber reflect adaptive rearrangements aimed at greater tolerance of the cellular system to challenges, primarily hypoxia and endogenous and exogenous toxins. Different mechanisms of adaptive changes including an activated hepatic detoxification system as a hormetic response, are discussed considering the specific metabolic features of the naked mole rat.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3