Combination RSL3 Treatment Sensitizes Ferroptosis- and EGFR-Inhibition-Resistant HNSCCs to Cetuximab

Author:

Liu Shujie,Yan Shuai,Zhu Jie,Lu RuiqingORCID,Kang Chujie,Tang Kang,Zeng Jinfeng,Ding Mingmei,Guo Zixiang,Lai Xianxin,Jiang Yinan,Wu Siqing,Zhou Lihua,Sun LitaoORCID,Zhou Zhong-Wei

Abstract

Head and neck squamous cell carcinomas (HNSCCs) are a type of cancer originating in the mucosal epithelium of the mouth, pharynx, and larynx, the sixth most common cancer in the world. However, there is no effective treatment for HNSCCs. More than 90% of HNSCCs overexpress epidermal growth factor receptors (EGFRs). Although small molecule inhibitors and monoclonal antibodies have been developed to target EGFRs, few EGFR-targeted therapeutics are approved for clinical use. Ferroptosis is a new kind of programmed death induced by the iron catalyzed excessive peroxidation of polyunsaturated fatty acids. A growing body of evidence suggests that ferroptosis plays a pivotal role in inhibiting the tumor process. However, whether and how ferroptosis-inducers (FINs) play roles in hindering HNSCCs are unclear. In this study, we analyzed the sensitivity of different HNSCCs to ferroptosis-inducers. We found that only tongue squamous cell carcinoma cells and laryngeal squamous cell carcinoma cells, but not nasopharyngeal carcinoma cells, actively respond to ferroptosis-inducers. The different sensitivities of HNSCC cells to ferroptosis induction may be attributed to the expression of KRAS and ferritin heavy chain (FTH1) since a high level of FTH1 is associated with the poor prognostic survival of HNSCCs, but knocked down FTH1 can promote HNSCC cell death. Excitingly, the ferroptosis-inducer RSL3 plays a synthetic role with EGFR monoclonal antibody Cetuximab to inhibit the survival of nasopharyngeal carcinoma cells (CNE-2), which are insensitive to both ferroptosis induction and EGFR inhibition due to a high level of FTH1 and a low level of EGFR, respectively. Our findings prove that FTH1 plays a vital role in ferroptosis resistance in HNSCCs and also provide clues to target HNSCCs resistant to ferroptosis induction and/or EGFR inhibition.

Funder

The Shenzhen Science and Technology Innovation Commission

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3