Macrophage-Specific, Mafb-Deficient Mice Showed Delayed Skin Wound Healing

Author:

Inoue Yuri,Liao Ching-Wei,Tsunakawa Yuki,Tsai I-Lin,Takahashi SatoruORCID,Hamada MichitoORCID

Abstract

Macrophages play essential roles throughout the wound repair process. Nevertheless, mechanisms regulating the process are poorly understood. MAFB is specifically expressed in the macrophages in hematopoietic tissue and is vital to homeostatic function. Comparison of the skin wound repair rates in macrophage-specific, MAFB-deficient mice (Mafbf/f::LysM-Cre) and control mice (Mafbf/f) showed that wound healing was significantly delayed in the former. For wounded GFP knock-in mice with GFP inserts in the Mafb locus, flow cytometry revealed that their GFP-positive cells expressed macrophage markers. Thus, macrophages express Mafb at wound sites. Immunohistochemical (IHC) staining, proteome analysis, and RT-qPCR of the wound tissue showed relative downregulation of Arg1, Ccl12, and Ccl2 in Mafbf/f::LysM-Cre mice. The aforementioned genes were also downregulated in the bone marrow-derived, M2-type macrophages of Mafbf/f::LysM-Cre mice. Published single-cell RNA-Seq analyses showed that Arg1, Ccl2, Ccl12, and Il-10 were expressed in distinct populations of MAFB-expressing cells. Hence, the MAFB-expressing macrophage population is heterogeneous. MAFB plays the vital role of regulating multiple genes implicated in wound healing, which suggests that MAFB is a potential therapeutic target in wound healing.

Funder

the Ministry of Education and Sports of Japan and the Ministry of Education JSPS

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3