The WMI Rat of Premature Cognitive Aging Presents Intrinsic Vulnerability to Oxidative Stress in Primary Neurons and Astrocytes Compared to Its Nearly Isogenic WLI Control

Author:

Ferreira Adriana1,Harter Aspen2,Afreen Sana1,Kanai Karoly3ORCID,Batori Sandor3,Redei Eva E.2

Affiliation:

1. Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA

2. Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA

3. Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary

Abstract

The primary neuronal and astrocyte culture described here is from the stress-hyperreactive Wistar Kyoto (WKY) More Immobile (WMI) rat with premature aging-related memory deficit, and its nearly isogenic control, the Less Immobile (WLI) strain. Primary WMI hippocampal neurons and cortical astrocytes are significantly more sensitive to oxidative stress (OS) generated by administration of H2O2 compared to WLI cells as measured by the trypan blue cell viability assay. Intrinsic genetic vulnerability is also suggested by the decreased gene expression in WMI neurons of catalase (Cat), and in WMI cortical astrocytes of insulin-like growth factor 2 (Igf2), synuclein gamma (Sncg) and glutathione peroxidase 2 (Gpx2) compared to WLI. The expressions of several mitochondrial genes are dramatically increased in response to H2O2 treatment in WLI, but not in WMI cortical astrocytes. We propose that the vulnerability of WMI neurons to OS is due to the genetic differences between the WLI and WMI. Furthermore, the upregulation of mitochondrial genes may be a compensatory response to the generation of free radicals by OS in the WLIs, and this mechanism is disturbed in the WMIs. Thus, this pilot study suggests intrinsic vulnerabilities in the WMI hippocampal neurons and cortical astrocytes, and affirm the efficacy of this bimodal in vitro screening system for finding novel drug targets to prevent oxidative damage in illnesses.

Funder

Davee Foundation

Weinberg College of Arts and Sciences, Northwestern University [WCAS]

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3