Anti-Photoaging Effects of Upcycled Citrus junos Seed Anionic Peptides on Ultraviolet-Radiation-Induced Skin Aging in a Reconstructed Skin Model

Author:

Ko Hyun-Ju1ORCID,Sim Su-An1,Park Mi-Hee1,Ryu Hwa-Sun1,Choi Won-Yeong1,Park Sung-Min1,Lee Jung-No1,Hyun Chang-Gu2ORCID

Affiliation:

1. Bio Convergence R&D Center, CoSeedBioPharm Corporation, Heungdeok-gu, Cheongju 28161, Republic of Korea

2. Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea

Abstract

Side streams and byproducts of food are established sources of natural ingredients in cosmetics. In the present study, we obtained upcycled low-molecular-weight anionic peptides (LMAPs) using byproducts of the post-yuzu-juicing process by employing an enzyme derived from Bacillus sp. For the first time, we isolated anionic peptides less than 500 Da in molecular weight from Citrus junos TANAKA seeds via hydrolysis using this enzyme. The protective effect of LMAPs against UVR-induced photoaging was evaluated using a reconstructed skin tissue (RST) model and keratinocytes. The LMAPs protected the keratinocytes by scavenging intracellular reactive oxygen species and by reducing the levels of paracrine cytokines (IL-6 and TNF-α) in UVR (UVA 2 J/cm2 and UVB 15 mJ/cm2)-irradiated keratinocytes. Additionally, the increase in melanin synthesis and TRP-2 expression in RST caused by UVR was significantly inhibited by LMAP treatment. This treatment strongly induced the expression of filaggrin and laminin-5 in UVR-irradiated RST. It also increased type I collagen expression in the dermal region and in fibroblasts in vitro. These results suggest that a hydrolytic system using the enzyme derived from Bacillus sp. can be used for the commercial production of LMAPs from food byproducts and that these LMAPs can be effective ingredients for improving photoaging-induced skin diseases.

Funder

Ministry of Trade, Industry & Energy (MOTIE), Korea, under the Middle of Market Enterprises Win-win Cooperation Innovative R&D Program, supervised by the Korea Institute for Advancement of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3