Xeno-Free 3D Bioprinted Liver Model for Hepatotoxicity Assessment

Author:

Ali Ahmed S. M.1ORCID,Berg Johanna1,Roehrs Viola1,Wu Dongwei1ORCID,Hackethal Johannes2,Braeuning Albert3,Woelken Lisa4,Rauh Cornelia4ORCID,Kurreck Jens1ORCID

Affiliation:

1. Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany

2. THT Biomaterials, 1030 Vienna, Austria

3. Department Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany

4. Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, 14195 Berlin, Germany

Abstract

Three-dimensional (3D) bioprinting is one of the most promising methodologies that are currently in development for the replacement of animal experiments. Bioprinting and most alternative technologies rely on animal-derived materials, which compromises the intent of animal welfare and results in the generation of chimeric systems of limited value. The current study therefore presents the first bioprinted liver model that is entirely void of animal-derived constituents. Initially, HuH-7 cells underwent adaptation to a chemically defined medium (CDM). The adapted cells exhibited high survival rates (85–92%) after cryopreservation in chemically defined freezing media, comparable to those preserved in standard medium (86–92%). Xeno-free bioink for 3D bioprinting yielded liver models with high relative cell viability (97–101%), akin to a Matrigel-based liver model (83–102%) after 15 days of culture. The established xeno-free model was used for toxicity testing of a marine biotoxin, okadaic acid (OA). In 2D culture, OA toxicity was virtually identical for cells cultured under standard conditions and in CDM. In the xeno-free bioprinted liver model, 3-fold higher concentrations of OA than in the respective monolayer culture were needed to induce cytotoxicity. In conclusion, this study describes for the first time the development of a xeno-free 3D bioprinted liver model and its applicability for research purposes.

Funder

Doctors Against Animal Experiments

Einstein Foundation Berlin

Bundesinstitut für Risikobewertung

Berlin Animal Protection Commissioner

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3