Mechanosensitive Cation Channel Piezo1 Is Involved in Renal Fibrosis Induction

Author:

Drobnik Marta1ORCID,Smólski Jakub1,Grądalski Łukasz1,Niemirka Szymon1,Młynarska Ewelina1ORCID,Rysz Jacek2,Franczyk Beata1

Affiliation:

1. Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland

2. Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland

Abstract

Renal fibrosis, the result of different pathological processes, impairs kidney function and architecture, and usually leads to renal failure development. Piezo1 is a mechanosensitive cation channel highly expressed in kidneys. Activation of Piezo1 by mechanical stimuli increases cations influx into the cell with slight preference of calcium ions. Two different models of Piezo1 activation are considered: force through lipid and force through filament. Expression of Piezo1 on mRNA and protein levels was confirmed within the kidney. Their capacity is increased in the fibrotic kidney. The pharmacological tools for Piezo1 research comprise selective activators of the channels (Yoda1 and Jedi1/2) as well as non-selective inhibitors (spider peptide toxin) GsMTx4. Piezo1 is hypothesized to be the upstream element responsible for the activation of integrin. This pathway (calcium/calpain2/integrin beta1) is suggested to participate in profibrotic response induced by mechanical stimuli. Administration of the Piezo1 unspecific inhibitor or activators to unilateral ureter obstruction (UUO) mice or animals with folic acid-induced fibrosis modulates extracellular matrix deposition and influences kidney function. All in all, according to the recent data Piezo1 plays an important role in kidney fibrosis development. This channel has been selected as the target for pharmacotherapy of renal fibrosis.

Publisher

MDPI AG

Reference77 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3