Identification of New EGFR Inhibitors by Structure-Based Virtual Screening and Biological Evaluation

Author:

Wang Shuyi1,Xu Xiaotian1,Pan Chuxin1,Guo Qian1,Li Qinlan1,Wan Shanhe1,Li Zhonghuang1,Zhang Jiajie1,Wu Xiaoyun1

Affiliation:

1. Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China

Abstract

Epidermal growth factor receptor (EGFR) inhibitors have been used in clinical for the treatment of non-small-cell lung cancer for years. However, the emergence of drug resistance continues to be a major problem. To identify potential inhibitors, molecular docking-based virtual screening was conducted on ChemDiv and Enamine commercial databases using the Glide program. After multi-step VS and visual inspection, a total of 23 compounds with novel and varied structures were selected, and the predicted ADMET properties were within the satisfactory range. Further molecular dynamics simulations revealed that the reprehensive compound ZINC49691377 formed a stable complex with the allosteric pocket of EGFR and exhibited conserved hydrogen bond interactions with Lys 745 and Asp855 of EGFR over the course of simulation. All compounds were further tested in experiments. Among them, the most promising hit ZINC49691377 demonstrated excellent anti-proliferation activity against H1975 and PC-9 cells, while showing no significant anti-proliferation activity against A549 cells. Meanwhile, apoptosis analysis indicated that the compound ZINC49691377 can effectively induce apoptosis of H1975 and PC-9 cells in a dose-dependent manner, while having no significant effect on the apoptosis of A549 cells. The results indicate that ZINC49691377 exhibits good selectivity. Based on virtual screening and bioassays, ZINC4961377 can be considered as an excellent starting point for the development of new EGFR inhibitors.

Funder

Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3