Molecular Genetic Characteristics of the Hoxc13 Gene and Association Analysis of Wool Traits

Author:

Sun Hongxian1ORCID,He Zhaohua1ORCID,Zhao Fangfang1,Hu Jiang1,Wang Jiqing1ORCID,Liu Xiu1ORCID,Zhao Zhidong1ORCID,Li Mingna1,Luo Yuzhu1ORCID,Li Shaobin1ORCID

Affiliation:

1. Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China

Abstract

Homobox C13 (Hoxc13) is an important transcription factor in hair follicle cycle development, and its deletion had been found in a variety of animals leading to abnormal hair growth and disruption of the hair follicle system. In this study, we used immunofluorescence, immunohistochemistry, real-time fluorescence quantitative PCR (RT-qPCR), and Kompetitive Allele-Specific PCR (KASP) genotyping to investigate molecular genetic characteristics of the Hoxc13 gene in Gansu alpine fine-wool sheep. The results revealed that Hoxc13 was significantly expressed during both the anagen and catagen phases (p < 0.05). It was found to be highly expressed predominantly in the dermal papillae and the inner and outer root sheaths, showing a distinct spatiotemporal expression pattern. Two single nucleotide polymorphisms (SNPs) in the exon 1 of Hoxc13, both the individual locus genotypes and the combined haplotypes were found to be correlated with wool length (p < 0.05). It was determined the mutations led to changes in mRNA expression, in which higher expression of this gene was related with longer wool length. In summary, this unique spatiotemporal expression pattern of the Hoxc13 gene may regulate the wool length of Gansu alpine fine-wool sheep, which can be used as a molecular genetic marker for wool traits and thus improve the breed.

Funder

National Natural Science Foundation of China

Distinguished Young Scholars Fund of Gansu Province

Discipline Team Project of Gansu Agricultural University

Fuxi Young Talents Fund of Gansu Agricultural University

Gansu Provincial Key R&D Program Projects

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3