Abstract
A crucial issue in applying the ordered weighted averaging (OWA) operator for decision making is the determination of the associated weights. This paper proposes a general least convex deviation model for OWA operators which attempts to obtain the desired OWA weight vector under a given orness level to minimize the least convex deviation after monotone convex function transformation of absolute deviation. The model includes the least square deviation (LSD) OWA operators model suggested by Wang, Luo and Liu in Computers & Industrial Engineering, 2007, as a special class. We completely prove this constrained optimization problem analytically. Using this result, we also give solution of LSD model suggested by Wang, Luo and Liu as a function of n and α completely. We reconsider two numerical examples that Wang, Luo and Liu, 2007 and Sang and Liu, Fuzzy Sets and Systems, 2014, showed and consider another different type of the model to illustrate our results.
Funder
Basic Science Research Program through the National
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献