Bacterial Communities in Zostera marina Seagrass Beds of Northern China

Author:

Zhang Yong1,Wang Qiuzhen2,Yao Yuan1,Tan Faqi1,Jiang Lin1,Shi Weijie1,Yang Wen1,Liu Jiayi2

Affiliation:

1. Qinhuangdao Ocean Center, Ministry of Natural Resources, Qinhuangdao 066002, China

2. Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China

Abstract

Microbial communities associated with seagrass beds play a crucial role in maintaining the balance of seagrass ecosystems. However, the driving mechanisms behind the structure and functional succession of seagrass microbial communities are still unclear despite the close interaction between seagrass and surrounding microorganisms. To enhance our knowledge of the diversity and functional characteristics of microbial communities in seagrass beds, we employed 16S rRNA gene amplicon sequencing to investigate bacterial communities in seagrass leaves, roots, seawater, and sediments in Caofeidian Zostera marina seagrass beds of Hebei Province, Northern China. Our results highlighted that specific types of bacteria were enriched in different sample compartments, indicating the importance of habitat in influencing microbial diversity and community structure in seagrass bed ecosystems. Notably, the microbial community structure of seagrass leaves and roots showed more similarity to that found in seawater and sediments. Among all the samples, the phylum Pseudomonadota exhibited the highest relative abundance, particularly in sediment samples where they accounted for over 95% of the total bacterial population. In addition, the enrichment of Vibrio, an opportunistic pathogen in several plant samples, alerted us to seagrass and its surrounding marine environments. Finally, functional predictions of microbial communities using PICRUSt2 revealed variations in microbial functions, indicating specific metabolic preferences of microbial communities in different natural environments. The present research sheds light on the mechanisms underlying microbial community succession and their ecological function in seagrass beds.

Funder

Natural Science Foundation of Hebei Province of China

Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province

North Sea Bureau of Ministry of Natural Resources of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3