Using the Hydraulic Properties of Zeolite to Grow Desert Willow—A Case Study to Rehabilitate Riparian Areas of Semi-Arid Environments

Author:

Solis Juan C.12ORCID,Bawazir A. Salim12,Piñon-Villarreal Aldo R.23

Affiliation:

1. Department of Civil Engineering, New Mexico State University, MSC 3CE, P.O. Box 30001, Las Cruces, NM 88003, USA

2. ReNUWIt Engineering Research Center, Stanford University, Stanford, CA 94305, USA

3. David L. Hirschfeld Department of Engineering, Angelo State University, San Angelo, TX 76909, USA

Abstract

Plants in riparian areas are well known for their beneficial functions such as providing biodiverse habitats, maintaining water quality, and stabilizing streambanks. However, riparian plants are declining in semi-arid environments due to long-term drought, a decline in groundwater table, and an increase in soil salinity. A new technique using clinoptilolite zeolite (CZ) as a wicking material with minimum artificial irrigation to grow desert willow [Chilopsis linearis (Cav.) Sweet] under field conditions is introduced; desert willow is native to riparian regions of the southwestern United States. For this study’s experiment, desert willow seedlings were planted in boreholes filled with clinoptilolite zeolite (CZ) as a substrate and in situ riparian sandy loam soil (RS) as a control. The boreholes extended to the groundwater table at two distinctive depths, shallow (avg. depth = 1.21 m) and deep (avg. depth = 2.14 m). The plants’ viability was then assessed by measuring their midday water potential (Ψmd) as an indicator of water stress. There was no significant difference in Ψmd (p > 0.05) between the plants grown in CZ and RS (mean Ψmd = −0.91 vs. −0.81 MPa) where the groundwater was shallow and a significant difference (mean Ψmd = −0.75 vs. −2.03 MPa) where the groundwater was deep. The proposed method is promising as an alternative method for growing desert willow or other plants for riparian rehabilitation with no artificial irrigation. However, its effectiveness depends on groundwater being accessible at the base of the boreholes used for planting.

Funder

Nation’s Urban Water Infrastructure (ReNUWIt) Engineering Research Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3