Study on the Influence of Calcination Temperature of Iron Vitriol on the Coloration of Ancient Chinese Traditional Iron Red Overglaze Color

Author:

Li Qijiang12,Wu Anjian1,Zhang Maolin12ORCID,Li Jinwei12ORCID,Cao Jianwen1,Li Haorui1,Jiang Yimei1

Affiliation:

1. Research Center of Ancient Ceramic, Jingdezhen Ceramic University, Jingdezhen 333001, China

2. Jiangxi Ceramic Heritage Conservation and Imperial Kiln Research Collaborative Innovation Center, Jingdezhen 333001, China

Abstract

Iron red, a traditional Jingdezhen overglaze color, is primarily colored with iron oxide (Fe2O3). In traditional processes, the main ingredient for the iron red overglaze color, raw iron red, is produced by calcining iron vitriol (FeSO4·7H2O). Analysis of ancient iron red porcelain samples indicates that the coloration is unstable, ranging from bright red to dark red and occasionally to black. Addressing this, the present study, from a ceramic technology standpoint, conducts a series of calcination experiments on industrial iron vitriol at varying temperatures. Utilizing methodologies such as differential scanning calorimetry-thermogravimetry (DSC-TG), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy with X-ray energy dispersive spectrometry (SEM-EDS), and optical microscopy (OM), this research scientifically explores the impact of iron vitriol’s calcination temperature on the coloration of traditional Jingdezhen iron red overglaze color. The findings indicate that from room temperature to 550 °C, the dehydration of iron vitriol resulted in the formation of Fe2(SO4)3 and a minimal amount of α-Fe2O3, rendering the iron red overglaze color a yellowish-red shade. At 650 °C, the coexistence of Fe2(SO4)3 and α-Fe2O3 imparted a brick-red color to the iron red. As the temperature was elevated to 700 °C, the desulfurization of Fe2(SO4)3 produced α-Fe2O3, transitioning the iron red to an orange red. With further temperature increase to 750 °C, the particle size of α-Fe2O3 grew and the crystal reflectivity decreased, resulting in a purplish-red hue. Throughout this stage, the powder remained in a single α-Fe2O3 phase. Upon further heating to 800 °C, the crystallinity of α-Fe2O3 enhanced, giving the iron red overglaze color a dark red or even black appearance.

Publisher

MDPI AG

Reference24 articles.

1. Li, J. (1998). History of Science in China (Volume on Ceramics), China Science Publishing & Media.

2. Qiu, G. (2010). Ceramic Firing, China Elephant Press.

3. Wei, Z. (1985). Ceramic Decorative Materials Science, Jiangxi Science and Technology Press.

4. The Science of Ancient Chinese Ceramics;Zhang;Bull. Chin. Ceram. Soc.,1983

5. Research on Ancient Glaze Colors in China;Zhang;J. Chin. Ceram. Soc.,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3