Investigation of the Properties of High-Viscosity Modified Asphalt Binder under Hygrothermal Environments

Author:

Xing Mingliang1,Li Guimin1,Zhou Xiaowei1,Liu Huan1,Cao Zhulin2,Li Zuzhong1,Chen Huaxin1

Affiliation:

1. School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China

2. Anhui Road & Bridge Engineer Co., Ltd., Pavement Branch, Hefei 230031, China

Abstract

High-viscosity modified asphalt binder (HVMA) is used widely as a polymer-modified binder in porous asphalt pavement because it can improve the cohesiveness of the asphalt mixture. However, because of the high voidage in the mixture, HVMA is vulnerable to aging induced by temperature, oxygen, water, sunlight, and other climatic conditions, which degrades the performance of pavement. The properties of asphalt binder are affected adversely by the effects of hygrothermal environments in megathermal and rainy areas. Therefore, it is essential to study the aging characteristics of HVMA under the influence of hygrothermal environments to promote its application as a high-viscosity modifier. A hygrothermal cycle aging test (HCAT) was designed to simulate the aging of HVMA when rainwater was kept inside of the pavement after rainfall in megathermal areas. One kind of base bitumen and three kinds of HVMA (referred to as SBS, A, and B, respectively) were selected in this study. Short-term aging tests, hygrothermal cycling aging tests, and long-term aging tests were performed on the base bitumen and three kinds of modified asphalt binder. Fourier-transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), and dynamic shear rheological (DSR) tests were used to evaluate the properties of the binders on the micro and macro scales. By comparing the index variations of the four binders before and after aging, the effects of the hygrothermal environment on the properties of HVMA were studied. It was found that the effects of the hygrothermal environment expedited the decomposition of the polymer and the formation of carbonyl groups compared with the TFOT and PAV test, which TGA confirmed further. Moreover, the thermal stability of the samples was improved after HCAT. In addition, the master curves of the complex modulus showed that hygrothermal cycles made the high-temperature rutting resistance of asphalt binder increase significantly. All of the results above verified that the effect of hygrothermal cycling could accelerate the aging of HVMA and shorten its service life.

Funder

National Science Foundation of China

China Postdoctoral Science Foundation

Science and Technology Plan Project in Guangxi Province of China

Fundamental Research Funds for the Central Universities, CHD

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3