Effect of Carbon Nanotubes on Chloride Diffusion, Strength, and Microstructure of Ultra-High Performance Concrete

Author:

Rafieizonooz Mahdi1ORCID,Kim Jang-Ho Jay1ORCID,Kim Jin-Su1,Jo Jae-Bin1

Affiliation:

1. School of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea

Abstract

This study delved into the integration of carbon nanotubes (CNTs) in Ultra-High Performance Concrete (UHPC), exploring aspects such as mechanical properties, microstructure analysis, accelerated chloride penetration, and life service prediction. A dispersed CNT solution (0.025 to 0.075 wt%) was employed, along with a superplasticizer, to ensure high flowability in the UHPC slurry. In addition, the combination of high-strength functional artificial lightweight aggregate (ALA) and micro hollow spheres (MHS) was utilized as a replacement for fine aggregate to not only reduce the weight of the concrete but also to increase its mechanical performance. Experimental findings unveiled that an increased concentration of CNT in CNT1 (0.025%) and CNT2 (0.05%) blends led to a marginal improvement in compressive strength compared to the control mix. Conversely, the CNT3 (0.075%) mixture exhibited a reduction in compressive strength with a rising CNT content as an admixture. SEM analysis depicted that the heightened concentration of CNTs as an admixture induced the formation of nanoscale bridges within the concrete matrix. Ponding test results indicated that, for all samples, the effective chloride transport coefficient remained below the standard limitation of 1.00 × 10−12 m2/s, signifying acceptable performance in the ponding test for all samples. The life service prediction outcomes affirmed that, across various environmental scenarios, CNT1 and CNT2 mixtures consistently demonstrated superior performance compared to all other mixtures.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3