Corrosion Behavior of CMT Cladding Layer of AZ91 Magnesium Alloy Subjected to Friction Stir Processing

Author:

Chen Yang12,Shen Junqi12ORCID,Hu Shengsun12,Zhen Yahui12,Zhao Huichao12

Affiliation:

1. Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300354, China

2. School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China

Abstract

Friction stir processing (FSP) was performed on an AZ91 magnesium alloy cladding layer fabricated by a cold metal transfer (CMT) technique. Electrochemical properties and immersion corrosion behavior of the cladding layer before and after FSP in 3.5 wt.% NaCl solution were investigated. After applying the FSP, the corrosion potential and corrosion current density of the cladding layer increased from −1.455 V to −1.397 V and decreased from 4.135 μA/cm2 to 1.275 μA/cm2, respectively. The results of OM and SEM displayed the refinement of grains and the dispersion of β-Mg17Al12 second phase in the friction stir processed (FSPed) cladding layer and more severe corrosion of the unprocessed sample. The corrosion rate of the FSPed cladding layer was lower, and a more compact corrosion product film was formed on the surface of the FSPed cladding layer. EDS results and XRD patterns showed that the corrosion products was mainly composed of Mg(OH)2. The increase in Al content in the α-Mg matrix, grain refinement, and fragmentation and dispersion of the β-Mg17Al12 second phase induced by FSP were the main factors that led to the improvement in corrosion resistance of the cladding layer of the AZ91 magnesium alloy fabricated by CMT.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3