The Influence of Spray Cooling Parameters on Workpiece Residual Stress of Turning GH4169

Author:

Feng Xinmin1,Liu Jinrong1,Hu Jingshu1,Liu Zhiwei1

Affiliation:

1. Key Laboratory of Advanced Manufacturing Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China

Abstract

To effectively reduce residual stresses in GH4169 workpieces, thus enhancing fatigue strength and operational lifespan, this study investigates the influence of spray cooling parameters on surface residual stresses during GH4169 turning in spray cooling conditions, utilizing both simulation and experimental approaches. A simulation model of residual stresses was established using finite element analysis when GH4169 was cut in spray cooling. The effects of spray pressure and flow rate on residual tensile stresses were analyzed. The analysis reveals that with increasing spray pressure, residual tensile stresses show a decreasing trend, gradually stabilizing. Conversely, with an increasing spray flow rate, residual tensile stresses initially decrease and then increase. The turning experiments of GH4169 were conducted under different spray parameters. After the experiment, the workpiece was sectioned and analyzed for residual stresses using X-ray diffraction instrumentation. The value residual stress measured closely matched those of simulation, with a relative error within 6%, validating the accuracy of the simulation model and confirming the appropriateness of parameter settings. These results contribute to the further promotion of spray cooling technology and facilitate the rational selection of spray parameters.

Funder

National Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3