Effect of Inconel 718 Filler on the Microstructure and Mechanical Properties of Inconel 690 Joint by Ultrasonic Frequency Pulse Assisted TIG Welding

Author:

Han Ke1,Hu Xin2,Zhang Xinyue1,Chen Hao1,Liu Jinping3,Zhang Xiaodong3,Chen Peng3,Li Hongliang1ORCID,Lei Yucheng1,Xi Jinhui3

Affiliation:

1. School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China

2. China Nuclear Power Engineering Co., Ltd., Beijing 100822, China

3. Key Laboratory for Highly Efficient and Intelligent Welding of China National Nuclear Corporation, China Nuclear Industry 23 Construction Co., Ltd., Beijing 101300, China

Abstract

Ultrasonic frequency pulse assisted TIG welding (UFP-TIG) experiments were conducted to join Inconel 690 alloy (IN690) by adding Inconel 718 alloy (IN718) as the filler. The effect of the filler on the microstructure, mechanical properties, and ductility dip cracking (DDC) susceptibility of IN690 joints were investigated. The results show that a variety of precipitates, including MC-type carbide and Laves phases, are formed in the weld zone (WZ), which are uniformly dispersed in the interdendritic region and grain boundaries (GBs). The increase in the thickness of the IN718 filler facilitates the precipitation and growth of Laves phases and MC carbides. However, the formation of Laves phases in the WZ exhibits a lower bonding force with the matrix and deteriorates the tensile strength of IN690 joints. Due to the moderate content of Laves phases in the WZ, the IN690 joint with 1.0 mm filler reaches the maximum tensile strength (627 MPa), which is about 96.5% of that of the base metal (BM). The joint with 1.0 mm filler also achieves the highest elongation (35.4%). In addition, the strain-to-fracture tests indicate that the total length of cracks in the joint with the IN718 filler decreases by 66.49% under a 3.8% strain. As a result, the addition of the IN718 filler significantly improves the mechanical properties and DDC resistance of IN690 joints.

Funder

National Natural Science Foundation of China

Anhui Province Key Laboratory of Special Welding Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3