3D FRP Reinforcement Systems for Concrete Beams: Innovation towards High Performance Concrete Structures

Author:

Yan Handong1,Zhao Jiabao123ORCID,Yin Jianli4,Sun Wei123

Affiliation:

1. College of Civil Engineering, Huaqiao University, Xiamen 361021, China

2. Higher-educational Engineering Research Centre for Intelligence and Automation in Construction of Fujian Province, College of Civil Engineering, Huaqiao University, Xiamen 361021, China

3. Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province, College of Civil Engineering, Huaqiao University, Xiamen 361021, China

4. KZJ New Materials Group Co., Ltd., Xiamen 361101, China

Abstract

Despite the advantages of using lightweight and non-corrosive carbon fiber reinforced polymer (CFRP) reinforcements in concrete structures, their widespread adoption has been limited due to concerns regarding the brittle failure of CFRP rupture and its relatively softer load-deflection stiffness. This work offers logical solutions to these two crucial problems: using aggregate coating to strengthen the CFRP-concrete bond and ultimately the load-deflection stiffness, and using CFRP-concrete debonding propagation to create pseudo-ductile behavior. Subsequently, the concrete cracking behavior, the apparent CFRP modulus with aggregates, and the post-peak capacity and deflection of three-dimensional (3D) CFRP-reinforced concrete are all described by equations derived from experiments. These formulas will be helpful in the future design of non-prismatic concrete components for low-impact building projects. The potential of this innovative design scheme in terms of increased capacity and deflections with less concrete material is demonstrated through comparisons between non-prismatic CFRP-reinforced concrete and measured steel reinforced equivalency.

Funder

Huaqiao University

Xiamen Foundation for Distinguished Young Scholar

Xiamen Municipal Construction Bureau

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3