Tuning Textural Properties by Changing the Morphology of SBA-15 Mesoporous Materials

Author:

Silva Francisco Emanuel da1,Rigoti Eduardo1,Mello Mariele Iara Soares de1ORCID,Pergher Sibele B. C.1ORCID

Affiliation:

1. Laboratorio de Peneiras Moleculares, Instituto de Química, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000. Bairro Lagoa Nova, Natal 59072-970, RN, Brazil

Abstract

Changing the morphology is an excellent option for altering the textural parameters of SBA-15 materials. This study provides a guide on how the properties of mesoporous structures behave according to their morphology and their contribution to thermal stability. The objective of this work was to synthesize different morphologies (spherical, hexagonal prisms, rice-like grains, rods, and fibers) of SBA-15 materials and evaluate the existing textural changes. The materials were synthesized by varying the temperature of the synthesis gel from 25 °C to 55 °C, with stirring at 300 or 500 rpm. The results of X-ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption and desorption, and scanning electron microscopy were evaluated. Thermal stability tests were also conducted in an inert atmosphere. The materials were successfully synthesized, and it was observed that they all exhibited different characteristics, such as their ordering, interplanar distance, mesoporous parameter, specific surface area, micropore and mesopore volumes, external mesoporous area, and wall thickness. They also presented different thermal stabilities. The rice grain morphology had the highest specific surface area (908.8 cm2/g) and the best thermal stability, while the rod morphology had the best pore diameter (7.7 nm) and microporous volume (0.078 cm3/g).

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3