Laboratory Tests on the Possibility of Using Flax Fibers as a Plant-Origin Reinforcement Component in Composite Friction Materials for Vehicle Braking Systems

Author:

Borawski Andrzej1ORCID,Szpica Dariusz1ORCID,Mieczkowski Grzegorz1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Bialystok University of Technology, 45C Wiejska Str., 15-351 Bialystok, Poland

Abstract

Braking systems are extremely important in any vehicle. They convert the kinetic energy of motion into thermal energy that is dissipated into the atmosphere. Different vehicle groups have different nominal and maximum speeds and masses, so the amount of thermal energy that needs to be absorbed by the friction pads and then dissipated can vary significantly. Conventional friction materials are composite materials capable of withstanding high temperatures (in the order of 500–600 °C) and high mechanical loads resulting from braking intensity and vehicle weight. In small vehicles traveling at low speeds, where both the amount of thermal energy and its density are limited, the use of slightly weaker friction materials with better ecological properties can be considered. This work proposes a prototype composite friction material using flax fibers as reinforcement instead of the commonly used aramid. A number of samples were prepared and subjected to laboratory tests. The samples were prepared using components of plant origin, specifically flax fibers. This component acted as reinforcement in the composite friction material, replacing aramid commonly used for this purpose. The main tribological characteristics were determined, such as the values of the coefficients of friction and the coefficients of abrasive wear rate. For this purpose, an authorial method using ball-cratering contact was used. The results were analyzed using statistical methods. It was found that the composite material using flax fibers does not differ significantly in its tribological properties from conventional solutions; so, it can be assumed that it can be used in the vehicle’s braking system.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3