GPRS Sensor Node Battery Life Span Prediction Based on Received Signal Quality: Experimental Study

Author:

Habiyaremye JosephORCID,Zennaro MarcoORCID,Mikeka ChomoraORCID,Masabo EmmanuelORCID,Kumaran Santhi,Jayavel KayalvizhiORCID

Abstract

Nowadays with the evolution of Internet of Things (IoT), building a network of sensors for measuring data from remote locations requires a good plan considering a lot of parameters including power consumption. A Lot of communication technologies such as WIFI, Bluetooth, Zigbee, Lora, Sigfox, and GSM/GPRS are being used based on the application and this application will have some requirements such as communication range, power consumption, and detail about data to be transmitted. In some places, especially the hilly area like Rwanda and where GSM connectivity is already covered, GSM/GPRS may be the best choice for IoT applications. Energy consumption is a big challenge in sensor nodes which are specially supplied by batteries as the lifetime of the node and network depends on the state of charge of the battery. In this paper, we are focusing on static sensor nodes communicating using the GPRS protocol. We acquired current consumption for the sensor node in different locations with their corresponding received signal quality and we tried to experimentally find a mathematical data-driven model for estimating the GSM/GPRS sensor node battery lifetime using the received signal strength indicator (RSSI). This research outcome will help to predict GPRS sensor node life, replacement intervals, and dynamic handover which will in turn provide uninterrupted data service. This model can be deployed in various remote WSN and IoT based applications like forests, volcano, etc. Our research has shown convincing results like when there is a reduction of −30 dBm in RSSI, the current consumption of the radio unit of the node will double.

Publisher

MDPI AG

Subject

Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Design of Battery Life Prediction Algorithm for New Energy Vehicles Based on Deep Learning;2024 International Conference on Electrical Drives, Power Electronics & Engineering (EDPEE);2024-02-27

2. RAFT Consensus Reliability in Wireless Networks: Probabilistic Analysis;IEEE Internet of Things Journal;2023-07-15

3. Low-Cost Wireless Monitoring and Control: A Case Study for Industrial Implementation;2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT);2023-05-22

4. Batteryless IoT module for sensing and signaling failures of passive power accessories;Microprocessors and Microsystems;2023-04

5. One-Size-Fits-All Policies Are Unacceptable: A Sustainable Management and Decision-Making Model for Schools in the Post-COVID-19 Era;International Journal of Environmental Research and Public Health;2022-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3