A Rehabilitation of Pixel-Based Spectral Reconstruction from RGB Images

Author:

Lin Yi-Tun1,Finlayson Graham D.1ORCID

Affiliation:

1. School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK

Abstract

Recently, many deep neural networks (DNN) have been proposed to solve the spectral reconstruction (SR) problem: recovering spectra from RGB measurements. Most DNNs seek to learn the relationship between an RGB viewed in a given spatial context and its corresponding spectra. Significantly, it is argued that the same RGB can map to different spectra depending on the context with respect to which it is seen and, more generally, that accounting for spatial context leads to improved SR. However, as it stands, DNN performance is only slightly better than the much simpler pixel-based methods where spatial context is not used. In this paper, we present a new pixel-based algorithm called A++ (an extension of the A+ sparse coding algorithm). In A+, RGBs are clustered, and within each cluster, a designated linear SR map is trained to recover spectra. In A++, we cluster the spectra instead in an attempt to ensure neighboring spectra (i.e., spectra in the same cluster) are recovered by the same SR map. A polynomial regression framework is developed to estimate the spectral neighborhoods given only the RGB values in testing, which in turn determines which mapping should be used to map each testing RGB to its reconstructed spectrum. Compared to the leading DNNs, not only does A++ deliver the best results, it is parameterized by orders of magnitude fewer parameters and has a significantly faster implementation. Moreover, in contradistinction to some DNN methods, A++ uses pixel-based processing, which is robust to image manipulations that alter the spatial context (e.g., blurring and rotations). Our demonstration on the scene relighting application also shows that, while SR methods, in general, provide more accurate relighting results compared to the traditional diagonal matrix correction, A++ provides superior color accuracy and robustness compared to the top DNN methods.

Funder

EPSRC

Apple Inc.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3