Energy Absorption in Carbon Fiber Composites with Holes under Quasi-Static Loading

Author:

Alhyari Omar,Newaz Golam

Abstract

Composite tubular structures have shown promise as energy absorbers in the automobile industry. This paper investigates the energy absorption characteristics of carbon fiber reinforced plastic (CFRP) tubes with pre-existing holes. Holes may represent an extreme case of impact damage that perforates the tube, e.g., stones from road surface impacting the tubes. Tubes with holes represent more conservative performance characteristics, since impact damage of the same size will have residual material, which may carry some load. Tubes with holes can provide the lower limit of CFRP tube performance under axial crushing relative to impact damaged tubes with perforation diameter close to the hole diameter. In this study, tubes with lay-up of [05/902/04] with one and two holes in defined locations and different diameters are experimentally studied under quasi-static loading. It was found that specific energy absorption (SEA) reduces by 50% with one or two holes of 15 mm size, 100 mm from top of the tube. The SEA reduction is about 60% lower than the regular tube when the diameter of the hole is 20 mm located at 100 mm from top. The most severe reduction occurs if the location of single or double holes are 75 mm from the top. In this case, a SEA reduction of 75% can be expected. Results indicate that holes can significantly alter the energy absorption capability of the tubes. It is also clear that in axial crushing of composite tubes, the location of the hole (100 to 75 mm) appears to create more pronounced effect than the size of the hole itself (15 vs. 20 mm) for the cases investigated. The failure modes for tubes with holes seem to preserve similar damage modes with delamination, frond creation, and brittle fracture, which is typically observed in regular composite tubes under axial crushing load. This is due to primarily front end crushing, which dominates the failure modes, while hole induced damage occurs later.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3