Anti-Fatigue Effect of a Dietary Supplement from the Fermented By-Products of Taiwan Tilapia Aquatic Waste and Monostroma nitidum Oligosaccharide Complex

Author:

Chen Ying-Ju,Kuo Chun-Yen,Kong Zwe-LingORCID,Lai Chin-Ying,Chen Guan-WenORCID,Yang An-Jen,Lin Liang-HungORCID,Wang Ming-Fu

Abstract

The Taiwan Tilapia is an important aquaculture product in Taiwan. The aquatic by-products generated during Tilapia processing, such as fish bones and skin, are rich in minerals and protein. We aimed to explore the effect of a dietary supplement, comprising a mixture of fermented Tilapia by-products and Monostroma nitidum oligosaccharides as the raw materials, combined with physical training on exercise performance and fatigue. We used a mouse model that displays a phenotype of accelerated aging. Male senescence-accelerated mouse prone-8 (SAMP8) mice were divided into two control groups—with or without physical training—and supplemented with different doses (0.5 times: 412 mg/kg body weight (BW)/day; 1 time: 824 mg/kg BW/day; 2 times: 1648 mg/kg BW/day) of fermented Tilapia by-products and Monostroma nitidum oligosaccharide-containing mixture and combined with exercise training groups. Exercise performance was determined by testing forelimb grip strength and with a weight-bearing exhaustive swimming test. Animals were sacrificed to collect physical fatigue-related biomarkers. Mice dosed at 824 or 1648 mg/kg BW/day showed improvement in their exercise performance (p < 0.05). In terms of biochemical fatigue indicators, supplementation of 824 or 1648 mg/kg BW/day doses of test substances could effectively reduce blood urea nitrogen concentration and lactate concentration and increase the lactate ratio (p < 0.05) and liver glycogen content post-exercise (p < 0.05). Based on the above results, the combination of physical training and consumption of a dietary supplementation mixture of fermented Tilapia by-products and Monostroma nitidum oligosaccharides could improve the exercise performance of mice and help achieve an anti-fatigue effect.

Funder

Council of Agriculture

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3