Partitioning of Transportation Networks by Efficient Evolutionary Clustering and Density Peaks

Author:

Al Alam PamelaORCID,Constantin JosephORCID,Constantin IbtissamORCID,Lopez CleliaORCID

Abstract

Road traffic congestion has became a major problem in most countries because it affects sustainable mobility. Partitioning a transport network into homogeneous areas can be very useful for monitoring traffic as congestion is spatially correlated in adjacent roads, and it propagates at different speeds as a function of time. Spectral clustering has been successfully applied for the partitioning of transportation networks based on the spatial characteristics of congestion at a specific time. However, this type of classification is not suitable for data that change over time. Evolutionary spectral clustering represents a state-of-the-art algorithm for grouping objects evolving over time. However, the disadvantages of this algorithm are the cubic time complexity and the high memory demand, which make it insufficient to handle a large number of data sets. In this paper, we propose an efficient evolutionary spectral clustering algorithm that solves the drawbacks of evolutionary spectral clustering by reducing the size of the eigenvalue problem. This algorithm is applied in a dynamic environment to partition a transportation network into connected homogeneous regions that evolve with time. The number of clusters is selected automatically by using a density peak algorithm adopted for the classification of traffic congestion based on the sparse snake similarity matrix. Experiments on the real network of Amsterdam city demonstrate the superiority of the proposed algorithm in robustness and effectiveness.

Funder

the Agence Universitaire de la Francophonie with the National Council for Scientific Research in Lebanon

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3