Abstract
The Expectation Maximisation (EM) algorithm is widely used to optimise non-convex likelihood functions with latent variables. Many authors modified its simple design to fit more specific situations. For instance, the Expectation (E) step has been replaced by Monte Carlo (MC), Markov Chain Monte Carlo or tempered approximations, etc. Most of the well-studied approximations belong to the stochastic class. By comparison, the literature is lacking when it comes to deterministic approximations. In this paper, we introduce a theoretical framework, with state-of-the-art convergence guarantees, for any deterministic approximation of the E step. We analyse theoretically and empirically several approximations that fit into this framework. First, for intractable E-steps, we introduce a deterministic version of MC-EM using Riemann sums. A straightforward method, not requiring any hyper-parameter fine-tuning, useful when the low dimensionality does not warrant a MC-EM. Then, we consider the tempered approximation, borrowed from the Simulated Annealing literature and used to escape local extrema. We prove that the tempered EM verifies the convergence guarantees for a wider range of temperature profiles than previously considered. We showcase empirically how new non-trivial profiles can more successfully escape adversarial initialisations. Finally, we combine the Riemann and tempered approximations into a method that accomplishes both their purposes.
Funder
European Research Council
European Union’s Horizon 2020 research and innovation program
Agence Nationale de la Recherche
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献