Application of the British Columbia MetPortal for Estimation of Probable Maximum Precipitation and Probable Maximum Flood for a Coastal Watershed

Author:

King Leanna M.ORCID,Micovic Zoran

Abstract

Estimation of the Probable Maximum Precipitation (PMP) and Probable Maximum Flood (PMF) are regulatory requirements in many jurisdictions that are used in the design of dams and assessment of existing infrastructure. The recently available British Columbia MetPortal provides regionally consistent PMP and precipitation frequency estimates across the province of British Columbia (BC). This paper proposes an approach to process and apply this data for the estimation of the PMF for watersheds across British Columbia. Guidelines are presented for selection of transposition points applicable to a watershed, and algorithms are developed for processing the geospatial probable maximum storm and precipitation frequency data. The algorithms developed are generic to multiple software and programming environments, and could also be applied in other regions where spatially and temporally intact PMP estimates are available. A detailed description of data sources and development of PMF scenario inputs is provided, as well as details of important sensitivity analyses. The methodology is applied to estimate the PMF for the Cheakamus Basin north of Squamish British Columbia. The application of the MetPortal PMP and precipitation frequency estimates, when used with a consistent PMF development methodology as proposed in this paper, will help improve the consistency of PMF estimates for watersheds across the province, offering a welcome improvement for dam owners and regulators.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference26 articles.

1. Dam Safety Guidelines,2013

2. Flood Evaluation and Dam Safety,2018

3. Understanding Future Safety of Dams in a Changing Climate

4. A non-traditional approach to the analysis of flood hazard for dams

5. ICOLD European Club—Dam Legislation,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3