Aerosol Characterization of Northern China and Yangtze River Delta Based on Multi-Satellite Data: Spatiotemporal Variations and Policy Implications

Author:

Luan Kuifeng12ORCID,Cao Zhaoxiang1,Hu Song1,Qiu Zhenge12,Wang Zhenhua3ORCID,Shen Wei13,Hong Zhonghua3ORCID

Affiliation:

1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China

2. Estuarine and Oceanographic Mapping Engineering Research Center of Shanghai, Shanghai 200123, China

3. College of Information Science, Shanghai Ocean University, Shanghai 201306, China

Abstract

Horizontal and vertical distributions of aerosol properties in the Taklimakan Desert (TD), North central region of China (NCR),North China Plain(NCP), and Yangtze River Delta (YRD) were investigated by statistical analysis using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) L3 data from 2007 to 2020, to identify the similarities and differences in atmospheric aerosols in different regions, and evaluate the impact of pollution control policies developed in China in 2013 on aerosol properties in the study area. The aerosol optical depth (AOD) distribution had substantial seasonal and spatial distribution characteristics. AOD had high annual averages in TD (0.38), NCP (0.49), and YRD (0.52). However, these rates showed a decline post-implementation of the long-term pollution control policies; AOD values declined by 5%, 13.8%, 15.5%, and 23.7% in TD, NCR, NCP, and YRD respectively when comparing 2014–2018 to 2007–2013, and by 7.8%, 11.5%, 16%, and 10.4% when comparing 2019–2020 to 2014–2018. The aerosol extinction coefficient showed a clear regional pattern and a tendency to decrease gradually as height increased. Dust and polluted dust were responsible for the changes in AOD and extinction coefficients between TD and NCR and NCP and YRD, respectively. In TD, with change of longitude, dust aerosol first increased and then decreased gradually, peaking in the middle. Similarly in NCP, polluted dust aerosol first increased and then decreased, with a maximum value in the middle. The elevated smoke aerosols of NCP and YRD were significantly higher than those observed in TD and NCR. The high aerosol extinction coefficient values (>0.1 km−1) were mainly distributed below 4 km, and the relatively weak aerosol extinction coefficients (>0.001 km−1) were mainly distributed between 5–8 km, indicating that the high-altitude long-range transport of TD and NCR dust aerosols affects NCP and YRD.

Funder

Shanghai Ocean Bureau

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3