Design and Simulations of 2D Planar Antenna for Dielectric Characterization of Biological Samples

Author:

Urvashi Urvashi,Saifi Zeeshan,Kumar MridulORCID,Krishnananda Soami Daya

Abstract

The dielectric parameters help in understanding the structural, compositional and functional analysis of biological samples. These parameters have also been widely adopted in biomedical and therapeutic fields. In the microwave region, these parameters attract interest because the principal constituent of most biological cells is water. Therefore, it is difficult to isolate the dielectric response of water present in a biological composite. Therefore, the technique with enhanced sensitivity is essential for measuring the dielectric properties of biological samples. In this paper, we report the design and CST simulation of a 2D-planar patch type antenna with capacitive coupling introduced by dividing the patch through a gap. The aforementioned design further improves the antenna’s sensitivity to the dielectric properties of materials. Here, we simulated ten biological phantoms by measuring the shift in resonant frequency and return loss. Our results were identical when loading samples on either of the two introduced patches. These results suggest the repeatability and further improvements in a cavity-based technique where the sample localization is an important issue. Moreover, we analytically studied the dependency of gain and directivity of the antenna on the capacitive coupling, which plays a major role in the antenna’s sensitivity to dielectric characterization.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3