Projection of Air Pollution in Northern China in the Two RCPs Scenarios

Author:

Dou Chengrong,Ji ZhenmingORCID,Xiao YukunORCID,Hu ZhiyuanORCID,Zhu Xian,Dong Wenjie

Abstract

Air pollution in North China (NC) is an important issue affecting the economy and health. In this study, we used a regional climate model, the Weather Research and Forecasting Model with Chemistry (WRF-Chem) to project air pollution in NC and investigate the variations of air pollutions response to future climate changes, which probably has an implication to strategy and control policy for air quality in NC. A comprehensive model evaluation was conducted to verify the simulated aerosol optical depth (AOD) based on MODIS and MISR datasets, and the model also showed reasonable results in aerosol concentrations. Future changes of air pollution in the middle of the 21st century (2031–2050) were projected in the two Representative Concentration Pathways (RCP4.5 and RCP8.5) and compared with the situation in the historical period (1986–2005). In the two RCPs, the simulated averaged PM2.5 concentration was projected with the highest values of 50–250 μg·m−3 over the Bohai Rim Economic Circle (BREC) in winter. The maximum AOD is in the Beijing–Tianjin–Hebei (BTH) region in summer, with an average value of 0.68. In winter, in the RCP4.5 scenario, PM2.5 concentration and AOD obviously declined in BTH and Shandong province. However, in the RCP8.5 scenario, PM2.5 concentration and AOD increased. Results indicated that air pollution would be reduced in winter if society developed in the low emission pathway. Precipitation was projected to increase both in the two RCPs scenarios in spring, summer, and winter, but it was projected to decrease in autumn. The planetary boundary layer height decreased in the two RCPs scenarios in the central region of NC in the summer and winter. The results indicated that changes of meteorological conditions have great impact on air pollution in future scenarios.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference71 articles.

1. Application of WRF-Chem Model over East Asia: Model Evaluation and Aerosol-Meteorology Feedbacks;Cai;Atmos. Environ.,2013

2. Changes in near-surface wind speed in China: 1969-2005

3. The National Morbidity, Mortality, and Air Pollution Study Part I: Method and Methodologic Issues;Samet;Res. Rep.,2000

4. On the Use of Generalized Additive Models in Time-Series Studies of Air Pollution and Health

5. Health Topics: Popular, Air pollution, Overviewhttps://www.who.int/health-topics/air-pollution#tab=tab_1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3