Automatic Generation of Seamless Mosaics Using Invariant Features

Author:

Manandhar PrajowalORCID,Jalil AhmadORCID,AlHashmi Khaled,Marpu PrashanthORCID

Abstract

The acquisition of satellite images over a wide area is often carried out across seasons because of satellite orbits and atmospheric conditions (e.g., cloud cover, dust, etc.). This results in spectral mismatch between adjacent scenes as the sun angle and the atmospheric conditions will be different for different acquisitions. In this work, we developed an approach to generate seamless mosaics using Scale-Invariant Features Transformation (SIFT). In this process, we make use of the overlapping areas between two adjacent scenes and then map spectral values of one imagery scene to another based on the filtered points detected by SIFT features to create a seamless mosaic. We make use of the Random Sample Consensus (RANSAC) method successively to filter out obtained SIFT points across adjacent tiles and to remove spectral outliers across each band of an image. Several high resolution satellite images acquired with WorldView-2 and Dubaisat-2 satellites, and medium resolution Sentinel-2 satellite imagery are used for experimentation. The experimental results show that the proposed approach can generate good seamless mosaics. Furthermore, Sentinel-2’s level 2A (L2A) product surface reflectance data is used to adjust the spectral values for color consistency.

Funder

UAE Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Image Stitching Algorithm Based on Point-Line Consistency and Local Edge Feature Constraints;Entropy;2024-01-10

2. True orthophoto mosaic generation: a simple and fast method;Journal of Geomatics Science and Technology;2023-03-01

3. Research on Automatic Dance Generation System Based on Deep Learning;Mathematical Problems in Engineering;2022-08-24

4. AUTOMATIC FOREST DEGRADATION MONITORING BY REMOTE SENSING METHODS AND COPERNICUS DATA;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2022-05-30

5. Generation of Detailed Classification Maps using High-Resolution Satellite Images At Country-wide Scale;2021 IEEE International India Geoscience and Remote Sensing Symposium (InGARSS);2021-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3