Implications of a Priori Parameters on Calibration in Conditions of Varying Terrain Characteristics: Case Study of the SAC-SMA Model in Eastern United States

Author:

Chouaib WafaORCID,Alila Younes,Caldwell Peter V.

Abstract

This study seeks to advance the knowledge about the effect of a priori parameters on calibration using the Sacramento Soil Moisture accounting Model (SAC-SMA). We investigated the catchment characteristics where calibration is most affected by the limitations in the a priori parameters and we studied the effect on the modeled processes. The a priori parameters of SAC-SMA model parameters were determined from soil-derived physical expressions that make use of the soil’s physical properties. The study employed 63 catchments from the eastern United States (US). The model calibration employed the Shuffle-Complex algorithm (SCE-UA) and used the a priori parameters as default allowing for ±35% as a range of deviation. The model efficiency after calibration was sensitive to the catchment landscape properties, particularly the soil texture and topography. The highest efficiency was obtained in conditions of well-drained soils and flat topography where the saturation excess overland flow is predominant. Most of the catchments with smaller efficiency had poorly drained soils where mountainous and forested catchments of predominant subsurface stormflow had the lowest efficiency. The current regional study shows that improvements of SAC-SMA a priori parameters are crucial to foster their operational use for calibration and prediction at ungauged catchments.

Funder

Islamic Development Bank

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rainfall–Runoff Process Simulation in the Karst Spring Basins Using a SAC–Tank Model;Journal of Hydrologic Engineering;2023-09

2. Development and Application of the Xin'anjiang Model based on Grid-Computation Unit Nesting;2022 8th International Conference on Hydraulic and Civil Engineering: Deep Space Intelligent Development and Utilization Forum (ICHCE);2022-11-25

3. Analysis of Farmer Relocation Selection Behavior Based on Bayesian Network;Journal of Function Spaces;2022-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3