Incorporating Antecedent Soil Moisture into Streamflow Forecasting

Author:

Oubeidillah Abdoul,Tootle Glenn,Piechota Thomas

Abstract

This study incorporates antecedent (preceding) soil moisture into forecasting streamflow volumes within the North Platte River Basin, Colorado/Wyoming (USA). The incorporation of antecedent soil moisture accounts for infiltration and can improve streamflow predictions. Current Natural Resource Conservation Service (NRCS) forecasting methods are replicated, and a comparison is drawn between current NRCS forecasts and proposed forecasting methods using antecedent soil moisture. Current predictors used by the NRCS in regression-based streamflow forecasting include precipitation, streamflow persistence (previous season streamflow volume) and snow water equivalent (SWE) from SNOTEL (snow telemetry) sites. Proposed methods utilize antecedent soil moisture as a predictor variable in addition to the predictors noted above. A decision system was used to segregate data based on antecedent soil moisture conditions (e.g., dry, wet or normal). Principal Components Analysis and Stepwise Linear Regression were applied to generate streamflow forecasts, and numerous statistics were determined to measure forecast skill. The results show that when incorporating antecedent soil moisture, the “poor” forecasts (i.e., years in which the NRCS forecast differed greatly from the observed value) were improved, while the overall forecast skill remains unchanged. The research presented shows the need to increase the monitoring and collection of soil moisture data in mountainous western U.S. watersheds, as this parameter results in improved forecast skill.

Funder

Wyoming Water Research Program, University of Wyoming

U.S. Geological Survey

Wyoming Water Development Commission

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3