Affiliation:
1. Department of Environmental Engineering, Federal University of Rondônia, Ji-Paraná 76900-726, Brazil
2. Department of Environmental Sciences, Federal University of São Carlos, Sorocaba 18052-780, Brazil
Abstract
This study aimed to investigate how sustainable forest management can affect litter hydrological properties. We investigated the net precipitation, litter mass, water-holding capacity, effective water-holding and retention capacity, maximum water retention and water content in unlogged and logged forests over 13 months in the Amazon Forest, where reduced-impact logging is allowed. The mean litter mass was similar for unlogged and logged forests. The litter water-holding capacity was 220% for unlogged and 224% for logged forests, and for fractions followed: unstructured > leaves > seeds > branches for both forests. The effective water-holding capacity was 48.7% and 49.3% for unlogged and logged, respectively, and the effective water retention was 10.3 t·ha−1 for both forests. The effective water retention in the rainy and dry seasons accounted for 12.5 t ha−1 and 7.2 t ha−1 for unlogged and logged, respectively. The maximum water retention was slightly greater for logged forests (16.7 t ha−1) than unlogged (16.3 t ha−1). The litter water content had 40% less water in the dry season than in the rainy in both forests. In general, there were no significant differences in litter storage and hydrological properties between stands. This suggests that reduced-impact logging did not significantly affect the hydrological dynamics of the litter layer in the Amazonian forests studied.
Funder
Foundation to Support the Development of Scientific and Technological Actions and Research from the state of Rondônia
Subject
Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献