Abstract
This work evaluates the suitability of linear scaling (LS) and empirical quantile mapping (EQM) bias correction methods to generate present and future hydrometeorological variables (precipitation, temperature, and streamflow) over the Chitral River Basin, in the Hindukush region of Pakistan. In particular, LS and EQM are applied to correct the high-resolution statistically downscaled dataset, NEX-GDDP, which comprises 21 state-of-the-art general circulation models (GCMs) from the coupled model intercomparison project phase 5 (CMIP5). Raw and bias-corrected NEX-GDDP simulations are used to force the (previously calibrated and validated) HBV-light hydrological model to generate long-term (up to 2100) streamflow projections over the catchment. Our results indicate that using the raw NEX-GDDP leads to substantial errors (as compared to observations) in the mean and extreme streamflow regimes. Nevertheless, the application of LS and EQM solves these problems, yielding much more realistic and plausible streamflow projections for the XXI century.
Subject
Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献