Investigating Uncertainty of Future Predictions of Temperature and Precipitation in The Kerman Plain under Climate Change Impacts

Author:

Goodarzi Mohammad Reza1ORCID,Heydaripour Mahnaz2ORCID,Jamali Vahid2ORCID,Sabaghzadeh Maryam2,Niazkar Majid3ORCID

Affiliation:

1. Department of Civil Engineering, Yazd University, Yazd 8915813135, Iran

2. Department of Civil Engineering, Water Resources Management Engineering, Yazd University, Yazd 8915813135, Iran

3. Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy

Abstract

Climate change affects hydroclimatic variables, and assessing the uncertainty in future predictions is crucial. This study aims to explore variations in temperature and precipitation in the Kerman Plain under climate change impacts between 2023 and 2054. For this purpose, two climate models, MRI-ESM-2 and BCC-CSM2-MR, were used to simulate precipitation and temperature under two different scenarios. The Mann–Kendall test was employed to analyze the annual time series in the future period. The results indicated an increase in the average temperature of about 1.5 degrees Celsius based on both scenarios in the coming years. Furthermore, an average annual increase of 6.37 mm of precipitation was predicted under the SSP585 scenario. Meanwhile, under the SSP585 scenario, an increase was estimated using the MRI-ESM-2 model, and a decrease was predicted with the BCC-CSM2-MR model. The Mann–Kendall test revealed a downward trend in the BCC-CSM2-MR model under both scenarios and an upward trend in the MRI-ESM-2 model under both scenarios. The bootstrap method and the R-factor index were exploited in this study with a 95% confidence interval to estimate the uncertainty of the predicted data. The results demonstrated that the predicted precipitation is more uncertain than the temperature. Finally, it is postulated that the obtained results provide necessary information for water resource management under a changing climate in the study area.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference40 articles.

1. Goyal, R., and Gaur, M.K. (2022). The Implications of Climate Change on Water Resources of Rajasthan, in Hydro-Meteorological Extremes and Disasters, Springer.

2. Stocker, T. (2014). Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

3. Diagnostic metrics for evaluation of annual and diurnal cycles;Wang;Clim. Dyn.,2010

4. Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., and Dasgupta, P. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

5. Assessment of Climate Change Impact on the Gharesou River Basin Using SWAT Hydrological Model;Zahabiyoun;CLEAN Soil Air Water,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3