Susceptibility of Water Resources and Hydropower Production to Climate Change in the Tropics: The Case of Lake Malawi and Shire River Basins, SE Africa

Author:

Mtilatila Lucy,Bronstert AxelORCID,Shrestha Pallav,Kadewere Peter,Vormoor Klaus

Abstract

The sensitivity of key hydrologic variables and hydropower generation to climate change in the Lake Malawi and Shire River basins is assessed. The study adapts the mesoscale Hydrological Model (mHM) which is applied separately in the Upper Lake Malawi and Shire River basins. A particular Lake Malawi model, which focuses on reservoir routing and lake water balance, has been developed and is interlinked between the two basins. Climate change projections from 20 Coordinated Regional Climate Downscaling Experiment (CORDEX) models for Africa based on two scenarios (RCP4.5 and RCP8.5) for the periods 2021–2050 and 2071–2100 are used. An annual temperature increase of 1 °C decreases mean lake level and outflow by 0.3 m and 17%, respectively, signifying the importance of intensified evaporation for Lake Malawi’s water budget. Meanwhile, a +5% (−5%) deviation in annual rainfall changes mean lake level by +0.7 m (−0.6 m). The combined effects of temperature increase and rainfall decrease result in significantly lower flows in the Shire River. The hydrological river regime may change from perennial to seasonal with the combination of annual temperature increase and precipitation decrease beyond 1.5 °C (3.5 °C) and −20% (−15%). The study further projects a reduction in annual hydropower production between 1% (RCP8.5) and 2.5% (RCP4.5) during 2021–2050 and between 5% (RCP4.5) and 24% (RCP8.5) during 2071–2100. The results show that it is of great importance that a further development of hydro energy on the Shire River should take into account the effects of climate change, e.g., longer low flow periods and/or higher discharge fluctuations, and thus uncertainty in the amount of electricity produced.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference82 articles.

1. When timing matters-considering changing temporal structures in runoff response surfaces

2. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change;Bates,2008

3. Climate Change and Land an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems;Shukla,2019

4. Africa: Up in Smoke?: Second Report from the Working Group on Climate Change and Development;Simms,2006

5. Aqueduct Projected Water Stress Country Rankings;Luo,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3