Submarine Groundwater Discharge Differentially Modifies Photosynthesis, Growth, and Morphology for Two Contrasting Species of Gracilaria (Rhodophyta)

Author:

Amato Daniel,Smith Celia,Duarte Thomas

Abstract

Gracilaria coronopifolia and an invasive congener, Gracilaria salicornia, were examined across an SGD gradient in the field and laboratory. Tissue samples of both species were cultured for 16 days along an onshore-offshore SGD gradient at Wailupe, Oahu. G. salicornia tolerated the extremely variable salinity, temperature, and nutrient levels associated with SGD. In marked contrast, half of G. coronopifolia plants suffered tissue loss and even death at SGD-rich locations in the field and in laboratory treatments simulating high SGD flux. Measurements of growth, photosynthesis, and branch development via two novel metrics indicated that the 27‰ simulated-SGD treatment provided optimal conditions for the apparently less tolerant G. coronopifolia in the laboratory. Benthic community analyses revealed that G. salicornia dominated the nearshore reef exposed to SGD compared with the offshore reef, which had a greater diversity of native algae. Ultimately, SGD inputs to coastal environments likely influence benthic community structure and zonation on otherwise oligotrophic reefs.

Funder

U.S. Environmental Protection Agency

U.S. Geological Survey

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3