A Hydrogeological Conceptual Model Refines the Behavior of a Mediterranean Coastal Aquifer System: A Key to Sustainable Groundwater Management (Grombalia, NE Tunisia)

Author:

Ben Saad Eya12ORCID,Ben Alaya Mohsen1ORCID,Taupin Jean-Denis3ORCID,Patris Nicolas3,Chaabane Najet1,Souissi Radhia1

Affiliation:

1. Laboratoire des Matériaux Utiles, Institut National de Recherche et d’Analyse Physico-chimique, Technopole de Sidi Thabet, Ariana 2020, Tunisia

2. Department of Geology, Faculty of Sciences, Farhat Hached Universitary Campus, University of Tunis El Manar, Tunis 1068, Tunisia

3. IRD, CNRS, IMT Mines Alès, HydroSciences, University of Montpellier, CEDEX 05, 34093 Montpellier, France

Abstract

The Mediterranean coastal aquifer system of the Grombalia basin (NE Tunisia) offers immense potential as a source of fresh water for agriculture, industry, and drinking water supply. Nonetheless, due to its intricate hydrogeological characteristics and the prevailing issue of groundwater salinity, comprehending its groundwater system behavior becomes crucial for the effective and sustainable management of this aquifer system. Based on the hydrogeological characterization of the Grombalia basin, a novel 3D hydrogeological conceptual model was developed to enhance the understanding of its complex aquifer system. The integration of insights from geological, hydrogeological, hydrodynamic, and hydrochemical components facilitated the construction of the hydrogeological conceptual model. Although the model’s validity faced initial uncertainties due to spatial interpolation of lithological sequences, this study’s thorough and encompassing hydrogeological investigation overcame these limitations. As a result, a more informed comprehension of the aquifer system complexities was achieved. This study reveals that the basin is underlain by an extensive, cohesive Mio–Plio–Quaternary aquifer system. The model demonstrates vertical and lateral hydrogeological continuity between the Quaternary and underlying Mio–Pliocene deposits, enabling groundwater flow and exchange between these layers. Over-abstraction of the Mio–Plio–Quaternary aquifer system has led to a significant drop in piezometric levels and raised the risk of seawater intrusion. These findings emphasize the critical necessity of taking into account the interconnections among hydrogeological units to ensure sustainable groundwater management. The developed conceptual model offers a key tool for understanding the hydrodynamic functioning of the Grombalia aquifer system with a view toward guiding future groundwater management strategies. The application of this approach in the Grombalia basin suggests its potential applicability to other regional aquifers facing comparable challenges.

Funder

INRAP

IRD

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3