Hydropedological Characteristics of the Cathedral Peak Research Catchments

Author:

Harrison Rowena,van Tol JohanORCID,Amiotte Suchet Philippe

Abstract

It has long been recognised that the role of soils is critical to the understanding of the way catchments store and release water. This study aimed to gain an understanding of the hydropedological characteristics and flow dynamics of the soils of three mountain catchment areas. Digital soil maps of the hydropedological characteristics of the catchments were interpreted and a conceptual response of these watersheds to precipitation was formed. This conceptual response was then tested with the use of site-specific precipitation and streamflow data. Furthermore, piezometers were installed in soils classified as the interflow hydropedological soil group as well as the saturated responsive hydropedological soil group and water table depth data for the three catchments were analysed. Climatic data indicated that there is a lag time effect in the quantity of precipitation that falls in the catchment and the corresponding rise in streamflow value. This lag time effect coupled with data obtained from the piezometers show that the various hydropedological soil groups play a pivotal role in the flow dynamics. Of importance is the unique influence of different wetland systems on the streamflow dynamics of the catchments. The drying and wetting cycles of individual wetland systems influenced both the baseflow connectivity and the overland flow during wetter periods. They are the key focus in understanding the connectivity between the hydropedological flow paths and the contribution of soil water to the stream networks of the three catchments.

Funder

IPHAKADE EARTH STEWARDSHIP SCIENCE BURSARY PROGRAMME

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3