Abstract
It has long been recognised that the role of soils is critical to the understanding of the way catchments store and release water. This study aimed to gain an understanding of the hydropedological characteristics and flow dynamics of the soils of three mountain catchment areas. Digital soil maps of the hydropedological characteristics of the catchments were interpreted and a conceptual response of these watersheds to precipitation was formed. This conceptual response was then tested with the use of site-specific precipitation and streamflow data. Furthermore, piezometers were installed in soils classified as the interflow hydropedological soil group as well as the saturated responsive hydropedological soil group and water table depth data for the three catchments were analysed. Climatic data indicated that there is a lag time effect in the quantity of precipitation that falls in the catchment and the corresponding rise in streamflow value. This lag time effect coupled with data obtained from the piezometers show that the various hydropedological soil groups play a pivotal role in the flow dynamics. Of importance is the unique influence of different wetland systems on the streamflow dynamics of the catchments. The drying and wetting cycles of individual wetland systems influenced both the baseflow connectivity and the overland flow during wetter periods. They are the key focus in understanding the connectivity between the hydropedological flow paths and the contribution of soil water to the stream networks of the three catchments.
Funder
IPHAKADE EARTH STEWARDSHIP SCIENCE BURSARY PROGRAMME
Subject
Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献