Determination of Recharge Areas That Supply Decades Old Groundwater to Creeks Inhabited by the Threatened Okaloosa Darter

Author:

Landmeyer James E.,McBride W. Scott,Tate William B.

Abstract

The Okaloosa darter (Etheostoma okaloosae) is a diminutive, perch-like, benthic fish that inhabits only six small, clear, and shallow creek systems that flow almost entirely within Eglin Air Force Base in the panhandle of northwest Florida. Listed as Endangered by the U.S. Fish and Wildlife Service (USFWS) in 1973, improvements in erosion control and habitat restoration led to the Okaloosa darter being downlisted from Endangered to Threatened in 2011. However, the long-term management of the species is hampered by the lack of knowledge of the spatial extent of the recharge areas that ultimately support creek flow through groundwater discharge. To address this lack of data, we collected groundwater samples from the sand and gravel aquifer beneath 11 headwater and 11 downgradient sites across six creek basins during February and December 2020. The groundwater samples were collected from 1 to 1.2 m beneath the creek bottom. Concentrations of sulfur hexafluoride (SF6) were analyzed and used to calculate groundwater age (residence time), and indicated that at the 11 headwater sites, recharge occurred between 11 and 28 years ago. Groundwater ages in downgradient parts of the same creeks indicated that recharge occurred between 5 and 25 years ago. When combined with representative values of hydraulic conductivity for the sand and gravel aquifer, the ages reveal that the extent of the maximum recharge distance from the sampling sites ranged from about 222 to 2011 m from the creeks. This new information can be used by natural resource managers as additional evidence to support the USFWS Recovery Plan and proposed delisting of the Okaloosa darter from the Endangered Species List. Moreover, these results may also be useful to fisheries biologists to incorporate groundwater inputs to facilitate fisheries management.

Funder

Office of the Assistant Secretary of Defense, Department of Defense Legacy Resource Management Program

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3