Assessment of Impacts of Climate Change on Tile Discharge and Nitrogen Yield Using the DRAINMOD Model

Author:

Golmohammadi Golmar,Rudra Ramesh P.,Parkin Gary W.,Kulasekera Priyantha B.,Macrae Merrin,Goel Pradeep K.ORCID

Abstract

The detrimental impacts of agricultural subsurface tile flows and their associated pollutants on water quality is a major environmental issue in the Great Lakes region and many other places globally. A strong understanding of water quality indicators along with the contribution of tile-drained agriculture to water contamination is necessary to assess and reduce a significant source of non-point source pollution. In this study, DRAINMOD, a field-scale hydrology and water quality model, was applied to assess the impact of future climatic change on depth to water table, tile flow and associated nitrate loss from an 8.66 ha agricultural field near Londesborough, in Southwestern Ontario, Canada. The closest available climate data from a weather station approximately 10 km from the field site was used by the Ontario Ministry of Natural Resources and Forestry (MNRF) to generate future predictions of daily precipitation and maximum and minimum air temperatures required to create the weather files for DRAINMOD. Of the 28 models applied by MNRF, three models (CGCM3T47-Run5, GFDLCM2.0, and MIROC3.2hires) were selected based on the frequency of the models recommended for use in Ontario with SRA1B emission scenario. Results suggested that simulated tile flows and evapotranspiration (ET) in the 2071–2100 period are expected to increase by 7% and 14% compared to 1960–1990 period. Results also suggest that under future climates, significant increases in nitrate losses (about 50%) will occur along with the elevated tile flows. This work suggests that climate change will have a significant effect on field hydrology and water quality in tile-drained agricultural regions.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3