Abstract
Flood mitigation in low-gradient, tidally-influenced, and rapidly urbanizing coastal locations remains a priority across a range of stakeholders and communities. Wetland ecosystems act as a natural flood buffer for coastal storms and sea level rise (SLR) while simultaneously providing invaluable benefits to urban dwellers. Assessing the vulnerability of wetlands to flood exposure under different SLR scenarios and vegetation responses to climatic variability over time allows for management actions, such as nature-based solutions, to be implemented to preserve wetland ecosystems and the services they provide. Nature-based solutions (NBSs) are a type of green infrastructure that can contribute to flood mitigation through the management and restoration of the ecosystems that provide socio-environmental benefits. However, identifying the flood mitigation potential provided by wetlands and the suitability for NBS implementation depends on the ecological condition and environmental exposure. We propose that wetland vulnerability assessments can be used as a rapid method to quantify changes in ecosystem dynamics and flood exposure and to prioritize potential locations of NBSs implementation. We quantified exposure risk using 100- and 500-year special flood hazard areas, 1–10 ft of sea level rise scenarios, and high-tide flooding and sensitivity using timeseries analyses of Landsat 8-derived multispectral indices as proxies for wetland conditions at subwatershed scales. We posit that wetland areas that are both highly vulnerable to recurrent flooding and degrading over time would make good candidate locations for NBS prioritization, especially when they co-occur on or adjacently to government-owned parcels. In collaboration with local governmental agencies responsible for flood mitigation in the coastal sub-watersheds of the City of New Bern and New Hanover County, North Carolina, we conducted field verification campaigns and leveraged local expert knowledge to identify optimal NBS priority areas. Our results identified several government-owned parcels containing highly vulnerable wetland areas that can be ranked and prioritized for potential NBS implementation. Depending on the biophysical characteristics of the area, NBS candidate wetland types include brackish and freshwater marshes and riverine swamp forests, even though the predominant wetland types by area are managed loblolly pinelands. This study underscores the critical importance of conserving or restoring marshes and swamp forests and provides a transferable framework for conducting scale-invariant assessments of coastal wetland condition and flood exposure as a rapid method of identifying potential priority areas for nature-based solutions to mitigate coastal flooding.
Subject
Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献