An Urban Flash Flood Alert Tool for Megacities—Application for Manhattan, New York City, USA

Author:

Al-Suhili Rafea,Cullen Cheila,Khanbilvardi Reza

Abstract

Urban flooding is a frequent problem affecting cities all over the world. The problem is more significant now that the climate is changing and urbanization trends are increasing. Various, physical hydrological models such as the Environmental Protection Agency Storm Water Management Model (EPA SWMM), MIKE URBAN-II and others, have been developed to simulate flooding events in cities. However, they require high accuracy mapping and a simulation of the underground storm drainage system. Sadly, this capability is usually not available for older or larger so-called megacities. Other hydrological model types are classified in the semi-physical category, like Cellular Automata (CA), require the incorporation of very fine resolution data. These types of data, in turn, demand massive computer power and time for analysis. Furthermore, available forecasting systems provide a way to determine total rainfall during extreme events, but they do not tell us what areas will be flooded. This work introduces an urban flooding tool that couples a rainfall-runoff model with a flood map database to expedite the alert process and estimate flooded areas. A 0.30-m Lidar Digital Elevation Model (DEM) of the study area (in this case Manhattan, New York City) is divided into 140 sub-basins. Several flood maps for each sub-basin are generated and organized into a database. For any forecasted extreme rainfall event, the rainfall-runoff model predicts the expected runoff volume at different times during the storm interval. The system rapidly searches for the corresponding flood map that delineates the expected flood area. The sensitivity analysis of parameters in the model show that the effect of storm inlet flow head is approximately linear while the effects of the threshold infiltration rate, the number of storm inlets, and the storm inlet flow reduction factor are non-linear. The reduction factor variation is found to exhibit a high non-linearity variation, hence requiring further detailed investigation.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference19 articles.

1. World Urbanization Prospects,2014

2. Spatial and temporal analysis of urban flood risk assessment

3. Semi- vs. Fully-Distributed Urban Stormwater Models: Model Set Up and Comparison with Two Real Case Studies

4. Review of Urban stormwater Models;Rangari;Environ. Model. Softw.,2000

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3